Dhanya Sridhar

Assistant Professor

Curriculum vitae

dhanya.sridhar <at> mila.quebec


University of Montreal, Mila

F.04, 6666 Rue St. Urbain

IFT 6168, Winter 2022

Causal Inference and ML


There is a growing interest in the intersection of causal inference and machine learning. On one hand, ML methods --- e.g., prediction methods, unsupervised methods, representation learning --- can be adapted to estimate causal relationships between variables. On the other hand, the language of causality could lead to new learning criteria that yield more robust and fair ML algorithms. In this course, we'll begin with an introduction to the theory behind causal inference. Next, we’ll cover work on causal estimation with neural networks, representation learning for causal inference, and flexible sensitivity analysis. We’ll conclude with work that draws upon causality to make machine learning methods fair or robust. This is an advanced course and students are expected to have a strong background in ML. 

Covid-19 Related Updates

  • Classes to return to in-person mode starting Jan 31.
  • From UdeM: Classes to be fully online until Jan. 31.
  • Classes to begin week of Jan 10.

Class Information

  • Start date: Jan. 11
  • When: Tuesdays, 12:30 to 2:30 PM and Fridays, 11:30 to 1:30 PM
  • Where: 
    • In-person: Auditorium 2, 2nd floor, Mila building, 6650 Rue Saint-Urbain. 
    • On Zoom:  link on Studium.
    • Attend in person if possible.
  • Office hours: Tuesdays, 2:30 to 3:30 PM, Room F.04 in the Mila building. 

Assigned Readings (updated often)

* = under resources on Piazza

Topics covered

  • Introduction to causality
    • Causal graphical models
    • Defining causal quantities: interventions and counterfactuals
    • Identifying causal quantities: graphical criteria, and instrumental variables
    • Estimating causal quantities
  • ML helps causality
    • Adapting neural networks for estimation
    • Learning representations for causal inference
    • Sensitivity analysis
    • Causal discovery
  • Causality helps ML
    • Defining disentanglement
    • Criteria for better out-of-distribution generalization
    • Criteria for fair prediction


  • 30% -- Reader reports for assigned readings
  • 70% -- Final project report


I will assume programming experience and familiarity with topics taught in Fundamentals of Machine learning (or equivalent).  Background in probabilistic graphical models will be useful.



Follow this website

You need to create an Owlstown account to follow this website.

Sign up

Already an Owlstown member?

Log in