Causal Inference and Machine Learning (IFT 6251)

Winter 2022 January 11, 2022

Causal Inference and Machine Learning (IFT 0251) IFT 6168

Contact Celine Begin if you have issues with enrollment!

Day 1 Plan

- Class logistics
- Brief introductions
- Bird eye's overview of causality
- Summary of topics covered in the class

Course information

Most important: Check course webpage (<u>https://www.dsridhar.com/courses/787</u>) regularly. I'll update it frequently with readings for every class, and other announcements (e.g., Covid-related changes).

• Best email for me is dhanya.sridhar@mila.quebec.

Course information

- Course time: Tuesdays, 12:30 2:30 PM and Fridays, 11:30 — 1:30 PM
- 5 min break halfway through, and we'll try to end 5-10 mins before allotted end time.
- Course location: Zoom for now, and when allowed, hybrid mode with in-person at Mila Agora¹.
- Office hours: Tues, 2:30 3:30 PM, on this Zoom meeting for now and in-person at Mila when allowed.

Course prerequisites

- I expect students to have taken a course that covers the fundamentals of supervised and unsupervised machine learning.
- I expect knowledge of basic probability and statistics (i.e., not measure theory).
- Background on probabilistic graphical models will help.

Course workload

- There will be an assigned reading for every class after today. You'll turn in a reader report each class, and I'll mark whether they were turned in or not.
- You'll complete a self-directed course project. I'll grade the project reports.

Reader Report (QCRs)

- The format is: Question, Comment, Research idea (QCR).
- On average, they'll be 1 page and should take 15 minutes.
- Bullet points are fine.
- Feel free to use LaTeX if you want to include math. Plain text is also fine.
- Remember, the reader reports are for your benefit they'll help you get more out of the class!

Course format

- Until approximately Jan. 28, we'll have lectures. I'll introduce background on causality.
- After that, students will take turns leading discussions on the assigned reading.

Discussion format

- Students upload reader reports by 8 AM morning of class.
- Leader clusters questions and comments from reports into some key discussion points.
- Leader presents for **10 mins.**
 - Mainly: situate the paper what's the significance of reading this paper?
 - Summarize the key technical insights or results in the paper.
- We discuss the leader's clustered discussion points.

Course project

- Around March 11, you'll turn in a 0.5 to 1 page project proposal.
- Around April 1, you'll turn in an "aspirational abstract" for your project report.
- I'll give you as long as I can to turn in your project report.

Course project

What are examples of strong projects?

- A systematic comparison of methods for a causal inference problem we discussed.
- Application of causal inference techniques to interesting causal question and dataset.
- New method or theory for a causal inference problem.

Course grading

• 30%: Course participation

- 15%: Turning in QCR reports
- 15%: Leading a paper discussion

70%: Course project

- 5%: Turning in project proposal
- 5%: Turning in aspirational abstract
- 60% Project report

Brief introductions (< 1 min)

- Name
- Program
- Year in program,
- **Optional:** area of interest (e.g., bioinformatics, NLP, economics, digital humanities, social science)

5 Minute Break

Examples of ML tasks

• I have high-dimensional medical images of tissue for some patients and physician-provided labels whether the issue is normal or cancerous. For an unseen future patient, I want to predict their cancer status from imaging data.

 I have 1 million articles from PubMed. I want to automatically group similar articles together, and group similar words together.

Examples of ML tasks

• I have high-dimensional medical images of tissue for some patients and physician-provided labels whether the issue is normal or cancerous. For an unseen future patient, I want to predict their cancer status from imaging data.

$$P(Y = 1 | X_1, ..., X_N)$$

• I have 1 million articles from PubMed. I want to automatically group similar articles together, and group similar words together.

$$P(X_1, ..., X_N); \quad X_i = (X_{i1}, ..., X_{iM})$$

Modern ML aspects

 $P(Y = 1 | X_1, ..., X_N) \quad P(X_1, ..., X_N)$

- Data like images or words in every document are high-dimensional. Because of this, learning low-dimensional representations is a key task.
- Inference involves observed distributions.
- Inference requires assumptions. The most common one is iid samples.

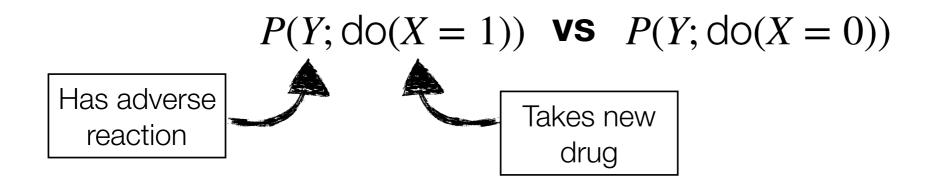
Examples of causal questions

• Does a new drug therapy cause adverse reactions in patients?

 I took Ibuprofen and my headache didn't go away. Had I taken acetaminophen, would my headache have gone away?

Examples of causal questions

• Does a new drug therapy cause adverse reactions in patients?

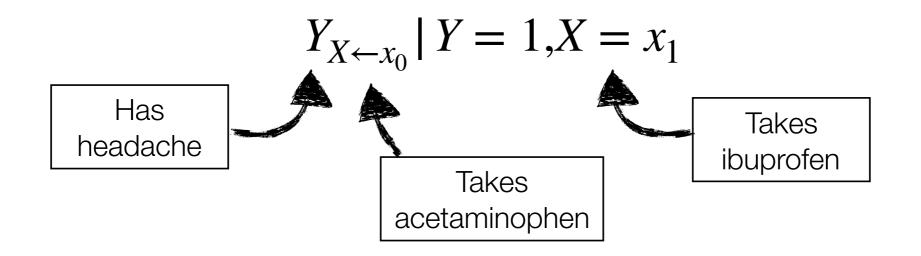


Examples of causal questions

• Does a new drug therapy cause adverse reactions in patients?

P(Y; do(X = 1)) **VS** P(Y; do(X = 0))

 I took Ibuprofen and my headache didn't go away. Had I taken acetaminophen, would my headache have gone away?



Causal inference aspects

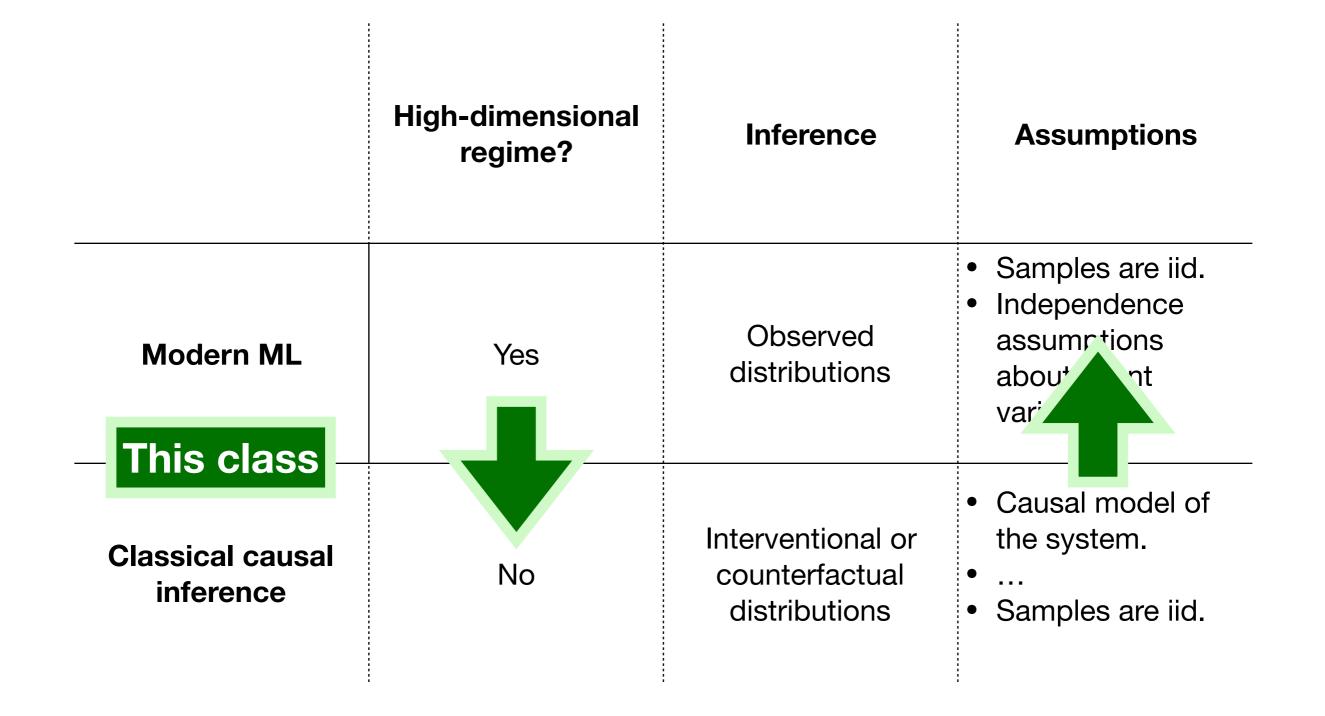
$$P(Y; do(X = 1))$$
 $Y_{X \leftarrow x_0} | Y = 1, X = x_1$

- At face value, seems to be about one-dimensional variables.
- Inferences involve parameters of interventional distributions, or counterfactual distributions.
- We need assumptions to connect an intervention distribution to a distribution over observed variables.

How does this connect to ML?

	High-dimensional regime?	Inference	Assumptions
Modern ML	Yes	Observed distributions	 Samples are iid. Independence assumptions about latent variables.
Classical causal inference	No	Interventional or counterfactual distributions	 Causal model of the system. Samples are iid.

How does this connect to ML?



Topics covered

- Introduction to causality

 Causal graphical models
 Defining causal quantities: interventions and counterfactuals
 Identifying causal quantities: graphical criteria, and instrumental variables
 Estimating causal quantities
- ML helps causality
 - O Adapting neural networks for estimation
 O Learning representations for causal inference
 O Sensitivity analysis
 - O Causal discovery
- Causality helps ML

 O Defining disentanglement
 O Criteria for better out-of-distribution generalization
 O Criteria for fair prediction

For next class

Read: Chapters 18, 19 and 20 of *Advanced Data Analysis from an Elementary Point of View,* Cosma Shalizi.

Key concepts: The "do" operator, directed acyclic graphical model, d-separation, causal graphical model, structural causal model, causal effect