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Day 1 Plan

• Class logistics


• Brief introductions


• Bird eye’s overview of causality


• Summary of topics covered in the class



Course information

• Most important: Check course webpage (https://
www.dsridhar.com/courses/787) regularly. I’ll update it 
frequently with readings for every class, and other 
announcements (e.g., Covid-related changes).


• Best email for me is dhanya.sridhar@mila.quebec.

Logistics

https://www.dsridhar.com/courses/787
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Course information

• Course time: Tuesdays, 12:30 — 2:30 PM and Fridays, 
11:30 — 1:30 PM


• 5 min break halfway through, and we’ll try to end 5-10 
mins before allotted end time.


• Course location: Zoom for now, and when allowed, 
hybrid mode with in-person at Mila Agora1. 

• Office hours: Tues, 2:30 — 3:30 PM, on this Zoom 
meeting for now and in-person at Mila when allowed.

Logistics

16650 Rue Saint-Urbain



Course prerequisites

• I expect students to have taken a course that covers the 
fundamentals of supervised and unsupervised machine 
learning.


• I expect knowledge of basic probability and statistics (i.e., 
not measure theory).


• Background on probabilistic graphical models will help.
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16650 Rue Saint-Urbain



Course workload

• There will be an assigned reading for every class after 
today. You’ll turn in a reader report each class, and I’ll 
mark whether they were turned in or not.


• You’ll complete a self-directed course project. I’ll grade 
the project reports.

Logistics



Reader Report (QCRs)

• The format is: Question, Comment, Research idea (QCR). 


• On average, they’ll be 1 page and should take 15 
minutes.


• Bullet points are fine.


• Feel free to use LaTeX if you want to include math. Plain 
text is also fine.


• Remember, the reader reports are for your benefit — 
they’ll help you get more out of the class!

Logistics



Course format

• Until approximately Jan. 28, we’ll have lectures. I’ll 
introduce background on causality.


• After that, students will take turns leading discussions on 
the assigned reading.

Logistics



Discussion format

• Students upload reader reports by 8 AM morning of 
class.


• Leader clusters questions and comments from reports 
into some key discussion points.


• Leader presents for 10 mins. 


• Mainly: situate the paper — what’s the significance 
of reading this paper?


• Summarize the key technical insights or results in the 
paper.


• We discuss the leader’s clustered discussion points.

Logistics



Course project

• Around March 11, you’ll turn in a 0.5 to 1 page project 
proposal.


• Around April 1, you’ll turn in an “aspirational abstract” for 
your project report.


• I’ll give you as long as I can to turn in your project report.

Logistics



Course project

What are examples of strong projects? 

• A systematic comparison of methods for a causal inference problem 
we discussed.


• Application of causal inference techniques to interesting causal 
question and dataset.


• New method or theory for a causal inference problem.

Logistics



Course grading

• 30%: Course participation 
• 15%: Turning in QCR reports

• 15%: Leading a paper discussion


• 70%: Course project 
• 5%: Turning in project proposal

• 5%: Turning in aspirational abstract

• 60% Project report

Logistics



Brief introductions (< 1 min) 

• Name 
• Program 
• Year in program,  
• Optional: area of interest (e.g., bioinformatics, NLP, 

economics, digital humanities, social science)



5 Minute Break



Examples of ML tasks

• I have high-dimensional medical images of tissue for some patients and 
physician-provided labels whether the issue is normal or cancerous. For an 
unseen future patient, I want to predict their cancer status from imaging data. 

• I have 1 million articles from PubMed. I want to automatically group similar 
articles together, and group similar words together.

Introduction



• I have high-dimensional medical images of tissue for some patients and 
physician-provided labels whether the issue is normal or cancerous. For an 
unseen future patient, I want to predict their cancer status from imaging data. 

• I have 1 million articles from PubMed. I want to automatically group similar 
articles together, and group similar words together.

Examples of ML tasks
Introduction

P(Y = 1 |X1, …, XN)

P(X1, …, XN); Xi = (Xi1, …, XiM)



Modern ML aspects
Introduction

P(Y = 1 |X1, …, XN) P(X1, …, XN)

• Data like images or words in every document are high-dimensional. 
Because of this, learning low-dimensional representations is a key task. 

• Inference involves observed distributions. 

• Inference requires assumptions. The most common one is iid samples.



Examples of causal questions

• Does a new drug therapy cause adverse reactions in patients? 

• I took Ibuprofen and my headache didn’t go away. Had I taken 
acetaminophen, would my headache have gone away?

Introduction



• Does a new drug therapy cause adverse reactions in patients?

Examples of causal questions
Introduction

P(Y; do(X = 1)) P(Y; do(X = 0))vs
Has adverse 

reaction Takes new 
drug



Examples of causal questions

• Does a new drug therapy cause adverse reactions in patients? 

• I took Ibuprofen and my headache didn’t go away. Had I taken 
acetaminophen, would my headache have gone away?

Introduction

P(Y; do(X = 1)) P(Y; do(X = 0))vs

YX←x0
|Y = 1,X = x1

Has 
headache

Takes 
ibuprofen

Takes 
acetaminophen



Causal inference aspects
Introduction

• At face value, seems to be about one-dimensional variables. 

• Inferences involve parameters of interventional distributions, or 
counterfactual distributions.  

• We need assumptions to connect an intervention distribution to a 
distribution over observed variables.

YX←x0
|Y = 1,X = x1P(Y; do(X = 1))



How does this connect to ML?
Introduction

High-dimensional 
regime? Inference Assumptions

Modern ML Yes Observed 
distributions

• Samples are iid.

• Independence 

assumptions 
about latent 
variables.


Classical causal 
inference No

Interventional or 
counterfactual  
distributions

• Causal model of 
the system.


• …

• Samples are iid.




How does this connect to ML?
Introduction

High-dimensional 
regime? Inference Assumptions

Modern ML Yes Observed 
distributions

• Samples are iid.

• Independence 

assumptions 
about latent 
variables.


Classical causal 
inference No

Interventional or 
counterfactual  
distributions

• Causal model of 
the system.


• …

• Samples are iid.


This class



Topics covered
• Introduction to causality 
◦Causal graphical models 
◦Defining causal quantities: interventions and counterfactuals 
◦ Identifying causal quantities: graphical criteria, and instrumental variables 
◦Estimating causal quantities 

• ML helps causality 
◦Adapting neural networks for estimation 
◦Learning representations for causal inference 
◦Sensitivity analysis 
◦Causal discovery 

• Causality helps ML 
◦Defining disentanglement 
◦Criteria for better out-of-distribution generalization 
◦Criteria for fair prediction 



For next class

Read: Chapters 18, 19 and 20 of Advanced Data Analysis from an 
Elementary Point of View, Cosma Shalizi.

Key concepts: The “do” operator, directed acyclic graphical 
model, d-separation, causal graphical model, structural causal 
model, causal effect


